(%) CONFLUENT

Taming the cost of Kafka
workloads in the cloud

Stefan Sprenger
Staff Software Engineer
ssprenger@confluent.io

Introduction
Reducing cross-AZ traffic
Compression
Agenda
Lag-based scaling of consumers

Scaling to zero

Summary

Introduction

Unlimited compute resources

We get instant access to a seemingly
unlimited capacity of compute resources
(except GPUSs).

CIOUd conm pUting Elastic scaling

We can elastically scale our applications
depending on the current load. We don't

is g rea t need to buy large server farms upfront to

cope with peak loads.

Usage-based pricing

We get billed for only those resources that
we have actually used.

Get charged for resources that are for
free off the cloud

Cloud providers charge for resources that
are for free off the cloud (at least if you stay
within certain limits), e.g., network traffic.

C h a I I e n g es i n Hibernating idle applications

Suddenly, you need to take care of
hibernating idle applications, so you don't

CIOUd COm pUting get charged for them.

Estimating cost is not trivial

We need to consider a lot of different factors
when estimating the costs of running an
application on a cloud platform. It's easy to
get it wrong if we, for instance, fail to predict
the workload pattern.

Scope of this talk

In scope Not in scope
« Running Kafka workloads (e.g,, « Operating Kafka and other
Kafka Streams apps, consumers, technologies, like Kafka Connect, in
producers) in the cloud the cloud
« Techniques to reduce and optimize « Managed vs self-managed Kafka
costs

« Any particular cloud platforms
« Running applications on
Kubernetes

« Developers

Use case: Kafka workload interacting with multi-AZ cluster

AZ2 (- i \

| g

Multi-AZ Kafka cluster (3 brokers, 1in each AZ)

Main cost drivers for Kafka workloads

Network

Compute

Storage

Kafka workloads cause ingress and egress traffic when consuming from
and producing to Kafka topics. Cloud providers differentiate between
AZ-local and remote (cross-AZ or internet) traffic.

Kafka workloads require compute resources to run. When using
Kubernetes, we mainly consider CPU and main memory consumption.
These resources can fluctuate if applications can scale up/down
elastically, making cost estimations challenging.

Stateful stream processing applications keep state on local disks, object
storage, or other storage solutions.

Network cost can be surprisingly high

66.66% of traffic is cross-AZ2 66.66% of traffic is cross-AZ
consume . produce
4 PROCESSING >

Throughput: 100 MB/s

Network cost can be surprisingly high

Cost of cross-AZ traffic: $ 0.01/ GB
Cost of intra-AZ traffic: $ 0.00/GB

66.66% of traffic is cross-AZ2 66.66% of traffic is cross-AZ
consume . produce
4 PROCESSING >

Throughput: 100 MB/s

Network cost can be surprisingly high

Cost of cross-AZ traffic: $ 0.01/ GB
Cost of intra-AZ traffic: $ 0.00/GB

66.06% of traffic is cross-Az 66.66% of traffic is cross-AZ
consume . produce
- PROCESSING >
Monthly cross-AZ traffic: 168,750 GB v Monthly cross-AZ traffic: 168,750 GB
Monthly cost: 1,687.50 USD Throughput: 100 M B/s Monthly cost: 1,687.50 USD

Monthly cross-AZ traffic (total): 337,500 GB

Monthly network cost (total). 3,375 USD

Taming network cost:
Reducing cross-AZ traffic

Partitions & Replication

topic: orders partition: O (leader)

AZ1

Partitions

|—\ Scale performance by parallelizing produce
or consume requests.

AZ 2 topic: orders partition: 1 (leader)

Replication

D D Improve availability by replicating topic
partitions across brokers, potentially across
different AZs. For each partition, one broker
takes over the role of the leader, the
remaining brokers are followers.

AZ 3

topic: orders partition: 2 (leader)

Multi-AZ Kafka cluster (3 brokers, 1in each AZ)

Kafka producers & consumers

By default, consumers and producers

topic: orders partition: O (leader) interact with the leader of each partition.

AZ1 (

AZ 2 c topic: orders partition: 1 (leader) % ppfgééb

Kafka Streams application

AZ 3 (

Multi-AZ Kafka cluster (3 brokers, 1in each AZ)

topic: orders partition: 2 (leader)

KIP-392: Allow consumers to fetch from closest replica

KIP-392: Allow consumers t

r‘o Managed Bookmarks O Working - confluen...

saz X Confluence spaces v

§g Apache Kafka

B Pages
99 Blog

SPACE SHORTCUTS

(3 Retrospectives

CHILD PAGES

fs Kafka Improvement Proposals

KIP-392: Allow consumers to f...

{3} Space tools «

+

Cc ‘(\3‘0 cwiki.apache.org/confluence/display/KAFKA/KIP-392%3A+Allow+consumers+to+fe... 3¢ ! s 3

3 All Bookmarks

Create Search 0

Pages / Index | Kafka Improvement Proposals

KIP-392: Allow consumers to fetch from
closest replica

Created by Jason Gustafson, last modified by Matthias J. Sax on Nov 05, 2019

e Status
¢ Motivation
¢ Proposed Changes
o Follower Fetching
= High watermark propagation
= Qut of range handling
o Finding the preferred follower
¢ Public Interfaces
o Consumer API
o Broker API
o Protocol Changes
Compatibility, Deprecation, and Migration Plan
Rejected Alternatives

Status

Current state: Accepted
Discussion thread:

JIRA:

KAFKA-8443 - Allow broker to select a preferred read replica for consumer
RESOLVED

Please keep the discussion on the mailing list rather than commenting on the wiki
(wiki discussions get unwieldy fast).

Motivation

It is common to have a Kafka cluster spanning multiple datacenters. For example, a
common deployment is within an AWS region in which each availability zone is
treated as a datacenter. Currently, Kafka has some basic support for rack awareness
which can be used in this scenario to control replica placement (by treating the
availability zone as a rack). However, currently consumers are limited to fetching

Introduced in Apache Kafka 2.4

Extends existing rack-aware placement of
partition replicas

Leverage locality and fetch from local replica
Broker config: broker . rack

Consumer config: client.rack

Follower fetching

topic: orders partition: O (leader)

__

topic: orders partition: 1 (leader) \ ppsngEEssmc ;
/ " G rack AZ2

Kafka Streams application

broker . rack=AZ3 topic: orders partition: 2 (leader)

Multi-AZ Kafka cluster (3 brokers, 1in each AZ)

Rack-aware replica selector

RackAwareReplicaSelector

<

“client.rack” 1is null

return leader of partition

"client.rack 1is not null

iterate through the online replicas

1f one or more exists with matching rackId, choose the most caught-up replica from among them
otherwise return the current leader (from remote rack)

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/replica/RackAwareReplicaSelector. j

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/replica/RackAwareReplicaSelector.java

Impact of follower fetching on network cost

Cost of cross-AZ traffic: $ 0.01/ GB
Coss of intra-AZ traffic: $ 0.00/ GB

4 0% of trafficis cross-Az 66.66% of traffic is cross-AZ
consume . produce
- PROCESSING >
Monthly cross-AZ traffic: O GB 1#68750-cB v Monthly cross-AZ traffic: 168,750 GB
Monthly cost: 0 USD +68+564Sb Throughput: 100 M B/s Monthly cost: 1,687.50 USD

Monthly cross-AZ traffic (total): 168,750 GB 35%£560-GB

Monthly cost (total): 1,687.50 USD 33/5USb

Follower fetching: Pros & Cons

Advantages Downsides
« Minimizes costly cross-AZ « No reduction of cross-AZ
traffic for consumers traffic for producers
« Might reduce read latency « Might increase read latency
because clients read from for consumers in AZ with
local AZ followers that lag behind

leaders

Taming network cost:
Compression of produce and consume requests

Producers send records in batches to reduce I/O ops

Batch of records

- (

Topic partition

batch.size

Upper bound of batch size in
bytes. Small batch size: low
memory needs and low latency.
Large batch size: High
throughput.

linger.ms

Maximum amount of time to
wait to fill up a batch of records.

Producers can compress batches of records

Producer config: compression.type

Impacts produce requests.

Batch of records

HEEE
Producer > (

Topic config: compression type

Impacts storage and consume requests.

Topic partition

Producer config: compression.type

e Defines the compression algorithm used by the producer client
e Available options: none, gzip, snappy, 1z4, zstd (default: none)
o |f set to none: Does not compress batch of records before sending it to the partition leader
o Otherwise: Compress records using configured algorithm before sending them to the partition
leader
e Compression tends to work best for larger batches with repeating patterns (i.e., no random data)
e Benchmark algorithms to find the one that works best for your data (sane starting point: 1z4)

e Typical compression rates: 2-3X

Topic config: compression.type

e Defines the compression algorithm used by the brokers (and consumers)

e Available options: uncompressed, producer, gzip, snappy, 1z4, zstd (default: producer)
o Ifsetto producer: Retain compression used by producer
o Ifsetto uncompressed:. Uncompress data before storing them
o Otherwise: Potentially re-compress data before storing them

e |In Most cases, just stick to default option producer and delegate compression to producer

Impact of compression (3x ratio) on network cost

Cost of cross-AZ traffic: $ 0.01/ GB
Coss of intra-AZ traffic: $ 0.00/ GB

no cross-AZ traffic 2/ of traffic is cross-AZ
consume . produce
- PROCESSING >
Monthly cross-AZ traffic: O GB v Monthly cross-AZ traffic: 56,250 GB 168756-G8
Monthly cost: 0 USD Throughput: 100 M B/s Monthly cost: 562.50 USD +68+565Sb

Monthly cross-AZ traffic (total): 56,250 GB 168-750-cB

Monthly cost (total): 562.50 USD +68+560-5Sb

Compression: Pros & Cons

Advantages Downsides
« Reduces network traffic (for e |Increases CPU consumption
both producers anad . Might increase end-to-end
consumers) latency
- Reduces storage « Might not work well on
requirements encrypted data

« Improves throughput

Taming compute cost:
Lag-based scaling of consumers

Scaling consumer groups

. You can parallelize consumers by launching multiple instances of the same application
(group.id)

Kafka automatically balances workload between applications with the same group.id, also

called consumer group

One consumer can process one or multiple partitions of the same topic

One partition can be processed by only one consumer of the same group. id
Numiber of partitions sets the maximum degree of parallelism of Kafka consumers

Consumer
group.id =
bbuzz

Partition 0 B = B

B

Consumer

group.id =

Consumer
group.id =
bbuzz

Kafka Partition 3 |

topic

Consumer
group

Consumer workload pattern in a perfect world

Throughput

Time

Stable throughput: Stable consumer group size

Throughput

Time

size of consumer group

More realistic workload pattern of consumers

A Example applications: Click events from
websites, Sensor data from loT devices, Order

data from online shops, etc.

@ Throughput

Time

Consumer lags

Kafka topic

Consumer group

Equals the number of records in a partition that have not
yet been processed by the consumer group

High consumer lags lead to an increase in end-to-end
processing latency

. A consumer lag close to O is preferable (small fluctuations

are normal)

If consumer lags keep increasing, it's time to scale up your
application by increasing the size of the consumer group
(unless the application features any bug causing the high
consumer lag)

KEDA: Scale Kafka consumers depending on current lag

() KEDA | Kubernetes Event-dr X -+

<« G 2% keda.sh w g) s

C3% Managed Bookmarks O Working - confluen... [All Bookmarks

4

Kubernetes Event-

driven Autoscaling

Application autoscaling made
simple

m & Auth providers N Blog

KEDA is a Kubernetes®-based Event Driven Autoscaler.
With KEDA, you can drive the scaling of any container in

e ———————————————————————————

KEDA can scale Deployments, StatefulSets, and Jobs
based on custom metrics, like consumer lags
Integrates with the Horizontal Pod Autoscaler API

If the consumer lag of the application increases,
KEDA can feed this to the Horizontal Pod Autoscaler
and trigger a scale-up of the application

If the application has catched up, the HPA can scale

down the application

KEDA: Scaling a Deployment based on consumer lags

Point KEDA to Kafka topic
and consumer group

apiVersion: keda.sh/vlalphal
kind: ScaledObject

—,

metadata

A

e: kafka-streams-app-scaledobject
amespace: default

kafka-streams-app
tngInterval: 5

J

localhost:9092
consumerGroup: my-group
topic: input-topic
LagThreshold: "50"

Scale Deployment with
name kafka-streams-app

Check metric every 5
seconds

Average target value to
trigger scaling

Elastic scaling of consumer groups

@ Throughput

R\

Time

() size of consumer group

Taming compute cost:
Scaling consumers to zero

The worst: Periodic batch inserts

A Example applications: Daily bulk loads from
external data sources, Reporting data, etc.

@ Throughput

Time

KEDA: Scaling a Deployment to zero

piVersion: keda.sh/vlalphal

ScaledObject

LA

kafka-streams-app-scaledobject
default

scaleTargetRef
-

NN
[\._ J l._,d

mil

name: kafka-streams-app
LlingInterval

\Rep L1

t ers: localhost:90
'sumerGroup: my-group
1C: lnput-toptic

reshold: "50"

Allow KEDA to scale
Deployment to O replicas

Wait 300 seconds before
scaling to zero

Scaling Kafka applications to zero

@ Throughput

Time

() Application instances

Summary

Summary

JIL

In

Network cost is often
surprisingly high

Follower fetching minimizes
cross-AZ traffic of
consumers

Compression reduces
produce/consume traffic

Lag-based scaling can
optimize compute of
fluctuating workloads

”?

Consider “scaling to zero
for use cases with batch
data sources

(%) CONFLUENT

Taming the cost of Kafka
workloads in the cloud

Stefan Sprenger
Staff Software Engineer
ssprenger@confluent.io

