
Taming the cost of Kafka
workloads in the cloud
Stefan Sprenger
Staff Software Engineer
ssprenger@confluent.io

01

02

03

04

05

06

Introduction

Reducing cross-AZ traffic

Compression

Lag-based scaling of consumers

Scaling to zero

Summary

Agenda

2

Introduction

3

Cloud computing
is great

4

Unlimited compute resources
We get instant access to a seemingly
unlimited capacity of compute resources
(except GPUs).

Elastic scaling
We can elastically scale our applications
depending on the current load. We don’t
need to buy large server farms upfront to
cope with peak loads.

Usage-based pricing
We get billed for only those resources that
we have actually used.

Challenges in
cloud computing

6

Get charged for resources that are for
free off the cloud
Cloud providers charge for resources that
are for free off the cloud (at least if you stay
within certain limits), e.g., network traffic.

Hibernating idle applications
Suddenly, you need to take care of
hibernating idle applications, so you don’t
get charged for them.

Estimating cost is not trivial
We need to consider a lot of different factors
when estimating the costs of running an
application on a cloud platform. It’s easy to
get it wrong if we, for instance, fail to predict
the workload pattern.

Scope of this talk

7

In scope Not in scope

• Running Kafka workloads (e.g.,
Kafka Streams apps, consumers,
producers) in the cloud

• Techniques to reduce and optimize
costs

• Running applications on
Kubernetes

• Developers

• Operating Kafka and other
technologies, like Kafka Connect, in
the cloud

• Managed vs self-managed Kafka

• Any particular cloud platforms

Use case: Kafka workload interacting with multi-AZ cluster

8

AZ 1

AZ 2

AZ 3

Multi-AZ Kafka cluster (3 brokers, 1 in each AZ)

Kafka Streams application

STREAM
PROCESSING

Main cost drivers for Kafka workloads

9

Network
Kafka workloads cause ingress and egress traffic when consuming from
and producing to Kafka topics. Cloud providers differentiate between
AZ-local and remote (cross-AZ or internet) traffic.

Compute
Kafka workloads require compute resources to run. When using
Kubernetes, we mainly consider CPU and main memory consumption.
These resources can fluctuate if applications can scale up/down
elastically, making cost estimations challenging.

Storage
Stateful stream processing applications keep state on local disks, object
storage, or other storage solutions.

Network cost can be surprisingly high

10

Throughput: 100 MB/s

consume produce

66.66% of traffic is cross-AZ 66.66% of traffic is cross-AZ

STREAM
PROCESSING

Network cost can be surprisingly high

11

Throughput: 100 MB/s

Cost of cross-AZ traffic: $ 0.01 / GB
Cost of intra-AZ traffic: $ 0.00 / GB

consume produce

66.66% of traffic is cross-AZ

STREAM
PROCESSING

66.66% of traffic is cross-AZ

Network cost can be surprisingly high

12

Throughput: 100 MB/s

Monthly cross-AZ traffic: 168,750 GB

Monthly cost: 1,687.50 USD

Cost of cross-AZ traffic: $ 0.01 / GB
Cost of intra-AZ traffic: $ 0.00 / GB

consume produce
STREAM

PROCESSING

Monthly cross-AZ traffic: 168,750 GB

Monthly cost: 1,687.50 USD

Monthly cross-AZ traffic (total): 337,500 GB

Monthly network cost (total): 3,375 USD

66.66% of traffic is cross-AZ 66.66% of traffic is cross-AZ

Taming network cost:
Reducing cross-AZ traffic

13

Partitions & Replication

14

AZ 1

AZ 2

AZ 3

topic: orders partition: 0 (leader)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (leader)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (leader)

Partitions
Scale performance by parallelizing produce
or consume requests.

Replication
Improve availability by replicating topic
partitions across brokers, potentially across
different AZs. For each partition, one broker
takes over the role of the leader, the
remaining brokers are followers.

Multi-AZ Kafka cluster (3 brokers, 1 in each AZ)

Kafka producers & consumers

15

AZ 1

AZ 2

AZ 3

topic: orders partition: 0 (leader)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (leader)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (leader)

Kafka Streams application

By default, consumers and producers
interact with the leader of each partition.

Multi-AZ Kafka cluster (3 brokers, 1 in each AZ)

STREAM
PROCESSING

KIP-392: Allow consumers to fetch from closest replica

● Introduced in Apache Kafka 2.4

● Extends existing rack-aware placement of

partition replicas

● Leverage locality and fetch from local replica

● Broker config: broker.rack

● Consumer config: client.rack

Follower fetching

AZ 1

AZ 2

AZ 3

topic: orders partition: 0 (leader)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (leader)

topic: orders partition: 2 (follower)

topic: orders partition: 0 (follower)

topic: orders partition: 1 (follower)

topic: orders partition: 2 (leader)

Kafka Streams application

Multi-AZ Kafka cluster (3 brokers, 1 in each AZ)

STREAM
PROCESSING

broker.rack=AZ1

broker.rack=AZ2

broker.rack=AZ3

client.rack=AZ2

Rack-aware replica selector

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/replica/RackAwareReplicaSelector.java

https://github.com/apache/kafka/blob/trunk/clients/src/main/java/org/apache/kafka/common/replica/RackAwareReplicaSelector.java

Impact of follower fetching on network cost

19

Throughput: 100 MB/s

Monthly cross-AZ traffic: 0 GB 168,750 GB

Monthly cost: 0 USD 1,687.50 USD

Cost of cross-AZ traffic: $ 0.01 / GB
Coss of intra-AZ traffic: $ 0.00 / GB

consume produce
STREAM

PROCESSING

Monthly cross-AZ traffic: 168,750 GB

Monthly cost: 1,687.50 USD

Monthly cross-AZ traffic (total): 168,750 GB 337,500 GB

Monthly cost (total): 1,687.50 USD 3,375 USD

✅ 0% of traffic is cross-AZ 66.66% of traffic is cross-AZ

Follower fetching: Pros & Cons

20

Advantages Downsides

• Minimizes costly cross-AZ
traffic for consumers

• Might reduce read latency
because clients read from
local AZ

• No reduction of cross-AZ
traffic for producers

• Might increase read latency
for consumers in AZ with
followers that lag behind
leaders

Taming network cost:
Compression of produce and consume requests

21

Producers send records in batches to reduce I/O ops

22

Producer

Batch of records

batch.size

Upper bound of batch size in
bytes. Small batch size: low
memory needs and low latency.
Large batch size: High
throughput.

linger.ms

Maximum amount of time to
wait to fill up a batch of records.Topic partition

Producers can compress batches of records

23

Producer

Batch of records

Topic partition

Producer config: compression.type

Impacts produce requests.

Topic config: compression type

Impacts storage and consume requests.

Producer config: compression.type

24

● Defines the compression algorithm used by the producer client

● Available options: none, gzip, snappy, lz4, zstd (default: none)

○ If set to none: Does not compress batch of records before sending it to the partition leader

○ Otherwise: Compress records using configured algorithm before sending them to the partition

leader

● Compression tends to work best for larger batches with repeating patterns (i.e., no random data)

● Benchmark algorithms to find the one that works best for your data (sane starting point: lz4)

● Typical compression rates: 2-3X

Topic config: compression.type

25

● Defines the compression algorithm used by the brokers (and consumers)

● Available options: uncompressed,producer, gzip, snappy, lz4, zstd (default: producer)

○ If set to producer: Retain compression used by producer

○ If set to uncompressed: Uncompress data before storing them

○ Otherwise: Potentially re-compress data before storing them

● In most cases, just stick to default option producer and delegate compression to producer

Impact of compression (3x ratio) on network cost

26

Throughput: 100 MB/s

Monthly cross-AZ traffic: 0 GB

Monthly cost: 0 USD

Cost of cross-AZ traffic: $ 0.01 / GB
Coss of intra-AZ traffic: $ 0.00 / GB

consume produce
STREAM

PROCESSING

Monthly cross-AZ traffic: 56,250 GB 168,750 GB

Monthly cost: 562.50 USD 1,687.50 USD

Monthly cross-AZ traffic (total): 56,250 GB 168,750 GB

Monthly cost (total): 562.50 USD 1,687.50 USD

no cross-AZ traffic ⅔ of traffic is cross-AZ

Compression: Pros & Cons

27

Advantages Downsides

• Reduces network traffic (for
both producers and
consumers)

• Reduces storage
requirements

• Improves throughput

• Increases CPU consumption
• Might increase end-to-end

latency
• Might not work well on

encrypted data

Taming compute cost:
Lag-based scaling of consumers

28

Scaling consumer groups

• You can parallelize consumers by launching multiple instances of the same application
(group.id)

• Kafka automatically balances workload between applications with the same group.id, also
called consumer group

• One consumer can process one or multiple partitions of the same topic
• One partition can be processed by only one consumer of the same group.id
• Number of partitions sets the maximum degree of parallelism of Kafka consumers

Consumer
group.id =
bbuzz

Consumer
group.id =
bbuzz

Consumer
group.id =
bbuzz Consumer

group

Partition 0

Partition 1

Partition 2

Partition 3Kafka
topic

Consumer workload pattern in a perfect world

30

Time

Th
ro

u
g

h
p

u
t

Stable throughput: Stable consumer group size

31

Time

Th
ro

u
g

h
p

u
t

 s
iz

e
of

 c
on

su
m

er
 g

ro
u

p

More realistic workload pattern of consumers

32

Time

Th
ro

u
g

h
p

u
t

Example applications: Click events from
websites, Sensor data from IoT devices, Order
data from online shops, etc.

Consumer lags

• Equals the number of records in a partition that have not
yet been processed by the consumer group

• High consumer lags lead to an increase in end-to-end
processing latency

• A consumer lag close to 0 is preferable (small fluctuations
are normal)

• If consumer lags keep increasing, it’s time to scale up your
application by increasing the size of the consumer group
(unless the application features any bug causing the high
consumer lag)Kafka topic

Consumer group

KEDA: Scale Kafka consumers depending on current lag

34

● KEDA can scale Deployments, StatefulSets, and Jobs

based on custom metrics, like consumer lags

● Integrates with the Horizontal Pod Autoscaler API

● If the consumer lag of the application increases,

KEDA can feed this to the Horizontal Pod Autoscaler

and trigger a scale-up of the application

● If the application has catched up, the HPA can scale

down the application

KEDA: Scaling a Deployment based on consumer lags

35

Scale Deployment with
name kafka-streams-app

Check metric every 5
seconds

Point KEDA to Kafka topic
and consumer group

Average target value to
trigger scaling

Elastic scaling of consumer groups

36

Time

Th
ro

u
g

h
p

u
t

 s
iz

e
of

 c
on

su
m

er
 g

ro
u

p

Taming compute cost:
Scaling consumers to zero

37

The worst: Periodic batch inserts

38

Time

Th
ro

u
g

h
p

u
t

Example applications: Daily bulk loads from
external data sources, Reporting data, etc.

KEDA: Scaling a Deployment to zero

39

Allow KEDA to scale
Deployment to 0 replicas

Wait 300 seconds before
scaling to zero

40

Time

Th
ro

u
g

h
p

u
t

A
p

p
lic

at
io

n
 in

st
an

ce
s

Scaling Kafka applications to zero

Summary

41

Summary

42

Network cost is often
surprisingly high

Follower fetching minimizes
cross-AZ traffic of
consumers

Compression reduces
produce/consume traffic

Lag-based scaling can
optimize compute of
fluctuating workloads

Consider “scaling to zero”
for use cases with batch
data sources

Taming the cost of Kafka
workloads in the cloud
Stefan Sprenger
Staff Software Engineer
ssprenger@confluent.io

